
Network Anomaly Detection using Exponential
Random Graph Models and Autoregressive Moving

Average

Michail Tsikerdekis, Scott Waldron, Alex Emanuelson

Computer Science Dept., Western Washington University

Abstract

Network anomaly detection solutions have been used as a defense against sev-

eral attacks especially related to data exfiltration. Approaches that observe a

network’s data volume and attempt to determine if an event is an anomaly are

susceptible to adversarial attacks. For example, machine learning models are

susceptible to machine learning attacks such as the boiling frog poisoning attack

in which increased traffic slowly raises the baseline of a defense model. We pro-

pose a new method that builds on top of existing network security monitoring

practices that uses exponential random graph modeling in order to integrate net-

work topology structure statistics in anomaly detection. We demonstrate the

effectiveness of our method using real-world as a baseline for experiments on

Domain Name System (DNS) data exfiltration scenarios. We highlight how our

method provides a better description of what is happening in the network struc-

ture and how this can assist cybersecurity analysts in making better decisions

in conjunction with existing intrusion detection systems. Finally, we describe

some of the strengths of our method as well as its computational requirements.

Keywords: graph, arma, detection, anomaly.

∗Corresponding author
Email address: Michael.Tsikerdekis@wwu.edu (Michail Tsikerdekis)

Preprint submitted to Journal of Information Security and Applications October 9, 2019



1. Introduction

Data exfiltration is a common type of cyberattack that an attacker uses

in order to extract data from a network once unauthorized access to private

and possibly sensitive data is gained. The exfiltrated data can include per-

sonally identifiable information (PII), private financial information, usernames5

with associated passwords and information involving strategic decisions. There

exist many communication mediums in which to data can be exfiltrated from.

Techniques include, but are not limited to: HTTP and HTTPS data trans-

fer, email, peer-to-peer file-sharing, SSH, stenography, and protocol tunneling.

Every system’s communication channel is potentially vulnerable and can data10

may be extracted through it without authorization. Although the techniques

and methodology for data exfiltration are known to cybersecurity professionals,

high profile incidents of data exfiltrations (e.g., DNS exfiltration) can still be

observed.

The cost of a data breach has consistently risen in recent years indicating15

a need for additional cybersecurity measures. According to the 2019 indepen-

dently conducted report by Ponemon Institute, the global average of a data

breach rose 6.4 percent to $3.86 million, while the cost per leaked or stolen

record increased by 4.8 percent to $148 [1]. Companies are currently desig-

nating an average budget of $3.6 million to cybersecurity with an increased20

preference for automated cyber-resilience. From 2017 to 2019, 57% of organi-

zations reported a cybersecurity incident that resulted in significant disruption

to the internal processes while 55% reported a data breach of more than 1,000

sensitive and confidential records. There is no single detection method that is

capable of detecting and thwarting all techniques of data exfiltration. Instead,25

by utilizing a conglomerate of methodologies and techniques, companies and

professionals can aim to lower their security risk, and ultimately increase their

ability to ensure data confidentiality. Data exfiltration is a growing issue and

must be addressed with a variety of anomaly detection methods.

There exists simple techniques for detecting data exfiltration. One such tech-30

2



nique measures the total data transfer of a network and detects unusual spikes in

volume. This method includes many drawbacks. If an attacker plans on trans-

ferring a large amount of accessible data, they can exfiltrate it by progressively

increasing their data transmission rate over the span of multiple weeks.

We introduce a graph-based statistical inference anomaly detection approach35

that focuses on detecting data exfiltration through a network. Our method

leverages network topology alongside data flow information in order to identify

anomalous events based on specific user-defined time intervals. This awareness

of network topology provides significant advantages over other simpler tech-

niques that use whole-network anomaly detection. These techniques focus on40

local or global characteristics rather than relations between network devices.

The main contributions of our approach are as follows:

- The method is topology aware by leveraging a graph representation to

summarize a network’s structural properties in the statistical detection of

an anomaly, as opposed to measuring activities for individual or global45

network components (e.g., single or whole network gigabytes of traffic).

- The method is efficient and can be implemented with existing data col-

lection practices for security monitoring, requiring no new data as long as

common sensor data (e.g. netflows) are collected.

- The method can be incorporated into the workflow of cybersecurity ana-50

lysts enabling both quantitative as well as qualitative assessments of net-

work conditions and provide an intuitive way of explaining traffic in the

network.

- The use of graph-based statistical approaches alongside seasonal trend de-

tection to provide an added layer of protection against adversarial machine55

learning attacks.

The rest of this paper is structured as follows. Section 2 presents related

work on anomaly-based detection for data exfiltration. Section 3 describes our

3



proposed methodology. We discuss on how networks can be analyzed using expo-

nential random graph models followed by time series modeling using autoregres-60

sive integrated moving average methods. Section 4 presents our experimental

design that focused on evaluating our anomaly-based detection approach. Sec-

tion 5 categorizes our results on empirical and experimental data and evaluates

the validity of our findings. Section 6 highlights some limitations for our ap-

proach that can assist cybersecurity professionals that aim to implement this65

approach in their daily workflow. Finally, in section 7, we provide some future

challenges and opportunities that can further improve our method.

2. Related works

Common attack scenarios for organizational networks involve exposed database

servers or compromised web servers. For example, databases have been found70

to be accessible through the internet, often with default credentials. However,

a more typical example involves an exploitable web server that would provide

an attacker with a staging area from which he or she can eventually access

confidential data on a database server. Insider threat [2, 3] is another attack

scenario where an agent inside the network (i.e. an employee of an organization)75

can seek to extract confidential data out of the network. Further, attackers that

pose an advanced persistent threat may seek to hide their communications in

the network in order to not be detected by cybersecurity professionals. The

threat of confidentiality breach through data exfiltration is further exacerbated

by the exponential growth of the number of mobile and IoT devices that are80

used by organizations. Data exfiltration attacks can involve mobile phones (e.g.,

exploiting iOS pairing service [4]), 3D printers (e.g., exploiting and stealing in-

tellectual property through a printer’s network functions [5]), and IoT devices

(e.g., data exfiltration of casino’s participant records via a compromised IoT

thermometer [6]).85

Regardless of the attack goal, attackers will make strategic decisions to ob-

fuscate their data communications through the network. Network transmissions

4



through common avenues (e.g., SSH connection) is likely to raise alerts for net-

work operators and cybersecurity analysts. As such, attackers often seek to

use a covert channel through which they can obfuscate their data exfiltration90

process. All possible network protocols become possible vectors for data exfil-

tration between the compromised machine and the attacker [2]. Examples of

such behavior include malware (e.g., botnets) [7, 8, 2, 9], where compromised

machines must communicate with a command and control center in order to

receive further instructions or update their configuration. Communication is95

often attempted via some common network protocol channel (e.g., DNS request

or TCP reserved bit space utilization). Similarly, in a targeted attack that is

focused primarily on data extraction, the data must travel through the network

of the compromised machine before arriving at the desired endpoint [3].

Most defenses for data exfiltration focus on analyzing network traffic flow100

through the corresponding flow-based metrics. This is an important avenue

of research because it is difficult to obfuscate the signatures relating to data

exfiltration through network communication protocols. In other words, the

attackers must abide by the rules of the communication protocols in order to

transmit their data through them.105

The DNS protocol is a channel that has been used for data exfiltrations and

has been the subject of study over the past decade. There exist multiple attack

vectors that leverage weak points in the DNS protocol, aiming primarily to send

data through an unsolicited channel. This method is known as tunneling. The

approach is very attractive due the fact that most firewalls do not block DNS110

queries, which nullifies the first line of defense on a victim’s machine. More

specifically, DNS tunneling has been researched with a variety of methods to

analyze possible exfiltrations [10, 9]. There are also DNS exfiltration malware

that use a variety of targeted techniques (e.g., DNSChanger, OilRig) [11, 12, 13].

Existing research in DNS data exfiltration detection falls under two large115

categories: byte-level analysis of DNS packet flows and analysis of domain name

strings in packets. The most rudimentary of examples in this category focus on

raising an alert past a number of DNS requests over some time window or by

5



measuring domain name entropy as a crude metric for detecting random strings

[14] [15]. However, more comprehensive solutions also exist.120

The work presented in [16] details a byte-level analysis of DNS packet flow

in a network. Analyzing just DNS traffic and its corresponding protocol, three

separate attack vectors were explored and analyzed. These attack vectors rep-

resented data exfiltration via a file transfer, an interactive session to mimic

command and control communications, and a scenario of web browsing over125

the DNS protocol. A temporal analysis was applied to the data, which helped

analyze the behavior of DNS communications for these attack events over time.

Various detection methods were then discussed as a means to effectively com-

bat these attack vectors. One such detection method uses a time-of-the-day-

dependent threshold (i.e, less traffic is expected during night hours so the detec-130

tion threshold should be lowered) while an alternative approach looks at various

time windows to determine increases or decreases in the average network DNS

flow as a means of raising an alert. If the data collected in this work had been

analyzed as a time series, both detection methods could be seen to represent as-

pects present in a typical time series of data where there might exist seasonality135

and a general trend. However, limitations for these methods also exist. Strictly

analyzing the byte flow for DNS traffic leaves the detection method open to a

boiling frog poisoning attack [17], where the data is exfiltrated slowly, aiming

to progressively raise DNS network traffic and in turn alert thresholds.

Alternate approaches for detecting DNS exfiltration that do not focus on140

the sum of bytes also exist. Namely, character frequency analysis of DNS do-

main and subdomain names have provided an alternate approach to detecting

a possibly compromised communication channel [10]. Anomalies were quickly

discovered when tunneled traffic was compared to legitimate domain traffic by

analyzing unigram, bigram, and trigram frequencies of characters. This ap-145

proach is effective because it has empirically been shown that domain names

follow Zipf’s law [18], that expects that the frequency of a word is inversely

proportional to its position in the frequency table. Using natural language pro-

cessing these domain name “words” can be categorized and identified. The

6



study demonstrated that by using n−gram frequency analysis, they can detect150

an English language exfiltration. This approach is novel in that it doesn’t con-

sider bytes of DNS flow as a predictive factor for data exfiltration, but instead

compares likely domain signatures with patterns in the English language. A

shortcoming of this approach is the lack of robustness when considering multi-

ple languages. Additionally, an attacker could obfuscate data extraction leading155

to a decreased anomaly detection performance for this method.

3. Proposed method

Our proposed method consists of two main components: the statistical anal-

ysis of the network topology graph using Exponential Random Graph Models

(ERGMs) and the time series analysis of the coefficients using an AutoRegressiveMoving-160

Average (ARMA) model. Figure 1 shows the process through which these ele-

ments come together.

Figure 1: A bird’s eye view of the components that comprise our topology aware anomaly

detection method.

Implementation of the ERGM component involves identifying the type of

traffic that needs to be monitored for anomalies and then representing the traffic

(obtained from packet captures or netflows) as a graph consisting of nodes and165

edges. The graph represents a snapshot in time for the network (i.e., cross-

sectional data) that would be typically collected in regular intervals (e.g., hourly

or daily). ERGM produces coefficients that describe the local properties of

the graph. An example of such a local property is the probability of three

7



devices communicating with one another forming a triangle in the graph. These170

coefficients form a temporal dataset that can then be validated with a seasonally

trained ARMA model to classify an anomaly outside of a desired threshold value.

For example, if over the course of a week, triangle formation has low probability

of occurring in our observed network and that probability suddenly changes

beyond a certain threshold (e.g., standard deviation) then, a network anomaly175

has occurred requiring a cybersecurity analyst to investigate further.

In the following subsections, we describe the two main components of our

method in detail.

3.1. Statistical Analysis of Network Topology

Analysis of network topology is effectively an analysis of graphs. The expo-180

nential family of functions that are used for statistical analysis of graphs covers

a broad range of applications. Exponential Random Graph Models (ERGMs),

a subset of this exponential family, characterize graph topology to model and

analyze structural properties of networks. A statistical model of a network is

used to capture regularities as well as recognize uncertainties. The outcome is185

represented as log-odds (a coefficient). The general probability formula is as

follows [19]: P(Y = y—θ) = exp{θ′s(y)}
c(θ) where Y is a random network of n ver-

tices while y is the observed network, and θ is a vector of parameters associated

with s(y), which are similar to regression coefficients. We assume an observable

graph’s structure y can be explained with a statistic vector s(y) depending on190

vertex attributes and the observable network. Finally, c is a normalizing con-

stant to ensure probabilities sum to 1. More specifically, c(θ) can be rewritten

as: c(θ) =
∑
∀y∈Y exp{θ′s(y)} Each network tie is a random variable and as

such we can make a probabilistic prediction for a tie between vertex i and j.

The network statistics to be added and counted (e.g. edges, 2-star, triangle)195

must be known a priori and specified by the user. For each additional term, the

model must generate an additional statistical parameter influencing the graph.

Figure 2 provides simple examples of types of ERGM terms, which describe

structural properties in the network.

8



Edge 2-Star

Triangle

Figure 2: An example of network terms to include when calculating probabilities.

In a directed graph of size n, there are 2n(n−1) possible permutations. Due200

to the size of the domain, calculating statistics of of all possible graphs grows

exponentially with the amount of vertices in the network. Instead, ERGM lever-

ages Markov Chain Monte Carlo (MCMC), a family of probability distribution

sampling algorithms, to estimate the statistical probabilities. MCMC is heavily

relied upon when computing models requiring integration over a multitude of205

unknown statistical parameters.

In layman’s terms, ERGM provides the statistical probability for user spec-

ified structural properties of an observed network based on a large sample of

networks that are equal in size to the observed network. This way, we can es-

timate the probability of triangle formation in an observed network, which in210

turn, informs us of how rare or common that graph property is.

Although originally intended to be used with social graphs (sociographs),

ERGM can also be used for network topology analysis since computer networks

can be mapped in graphs. For example, the flow of a network can be captured

across multiple protocols and can be extended into a graph representation of215

nodes and edges. This relationship can then be analyzed using a variety of

9



statistical user specified terms.

The statnet [19] package available through R [20] provides the necessary li-

braries to perform ERGM calculations on an observed network. In our proposed

method for network anomaly detection, the library ergm.count in the statnet220

package is used to handle the introduction of valued edges. This allowed us to

represent not just the network topology on a graph but also the traffic that tra-

versed through different network paths. The process for estimating coefficients

for valued networks is similar with the only difference being the need to sample

estimates for the sampled random networks’ edges. The sum of all edge values is225

polled from one of the user specified distributions available from the ergm.count

package (e.g. Geometric, Poisson, Bernoulli).

3.2. Time Series Analysis of Coefficients

The aim of time series analysis is to find patterns in noisy data[21]. Typically,

such data are empirical (e.g., real world network traffic) and are in part the result230

of non-deterministic processes. More specifically, these data may involve events

that take place over time and are measured at non-random intervals. Examples

of time series data include stock market trading data, sport metrics, weather

forecasting, etc. The value in modeling and predicting such systems is obvious,

but the difficulty lies in discovering a ground truth that can be isolated from the235

noise. The largest contributor to this difficulty is stationarity. In a time series,

the random variable of the distribution has stationarity if its mean, variance,

or covariance change over time. This characteristic is the critical factor in the

performance of the model’s ability to forecast. It would be extremely difficult for

a model to accurately predict values for a system that is truly random. Luckily,240

there are several methods of data manipulation that can take raw non-stationary

data and transform them to become stationary.

An ARMA model is a method for time series analysis that is aptly suited

for weakly stationary, stochastic time series data. That is, data with a con-

stant mean, variance and autocorrelation. ARMA models are a combination of245

two separate time series analysis techniques, namely autoregession and moving

10



average. The first component of ARMA (AR) is represented by this autore-

gressive process, where a prediction at time t is influenced by past observations

and a random white noise component. An AR model is defined as follows [22]:

xt = ζ + ϕ1xt−1 + ϕ2xt−2 + ϕ3xt−3 + ... ε where ζ represents a constant (inter-250

cept), φ1, φ2, and φ3 are the autoregressive model parameters, and ε a random

noise component.

The second component of ARMA (MA) consists of the moving average pro-

cess, also known as smoothing. This process is generally used when analyzing

data that might have trends or exploring how different time windows might af-255

fect trends in the future. The moving average process aims to remove noise from

observations in order to get closer to the underlying trend of the data. This pro-

cess can be described as follows[22]: xt = µ+ εt− θ1εt−1− θ2εt−2− θ3εt−3− ...

where µ is a constant, θ1, θ2, θ3 are the moving average model parameters, and

ε is a random error component.260

Combining the autoregressive and moving average equations together yields

our ARMA model, also written as ARMA(p, q), defined as follows [23]: Xt =

c+ εt +
∑p
i=1 ϕiXt−i +

∑q
i=1 θiεt−i where ϕ are the parameters of the autoreg-

gresive component, θ are the parameters of the moving average component, c is

a constant and ε is the noise component.265

We selected ARMA models for our proposed method as a means to raise

alerts due to the models having a component specializing in forecasting from past

observations and a component attempting to smooth observations by “learning”

the underlying trend. Although these models are typically used for forecasting

(e.g., a value 7 days into the future), our use of ARMA models focuses instead270

on verifying how our observed traffic fits our baseline prediction (i.e., is what

we are seeing now what we should be seeing). Typical network traffic follows a

strict repetitive pattern. This is especially true for many corporate or critical

infrastructure networks where the number of computing devices in a network

do not change often. Even networks that include public devices (e.g., public275

wireless) such as those found in municipal networks can have a fairly stable

traffic pattern that varies little aside from on and off days[14]. An example of

11



such an observable pattern is the lesser network activity over the weekends, as

there are fewer people using a network. It is also expected that such network

traffic is unlikely to deviate from a norm (once established). That is, traffic on280

a particular Monday is unlikely to significantly differ from traffic on a following

Monday. The configuration of this model and methodology of raising alerts is

discussed in greater detail in section 4.4.

4. Experimental Design

We tested our proposed method in order to evaluate its accuracy and com-285

putational performance on empirical (real-world) data. Our scenario of choice

focuses on DNS exfiltration attempts. Although this type of a data exfiltration

could be detected with reasonably good signatures (e.g., measuring entropy of

domain names or number of requests to the same FQDN) [10], it was chosen due

to its simplicity as a vignette that can demonstrate the efficacy of our method.290

In practice, our method can be applied in detecting any traffic that can be

projected into a graph of nodes and weighted edges. Further, we posit that

even though cybersecurity experts are aware of such obvious attacks, large data

breaches are still occurring using DNS exfiltration with the most recent example

being Equifax’s data breach [24].295

DNS requests were captured from a local municipal network in order to

produce a realistic network traffic baseline based on which we could test DNS

exfiltration incidents. The experimental design consists of four parts. First,

we describe our empirical data collection method as well as the injection of

DNS exfiltration traffic in our dataset. Next, we discuss the internal validity of300

the ERGM model and detail the model configuration in order to provide insight

into network analysis applied to DNS exfiltration. We subsequently describe the

experimental setup for our ARMA model, which used the coefficients produced

by our ERGM model for anomaly detection. Finally, we detail the process

followed for our classification experiments that produced results of our method’s305

accuracy in detecting anomalies.

12



4.1. Data Collection

The Public Infrastructure Security Collaboration and Exchange System (PISCES)

is an incorporated nonprofit providing free cybersecurity event monitoring for

several local municipalities in Washington State [25]. PISCES partners include310

Global Business Resources, Cyber Range Poulsbo, the Washington State Fusion

Center and the Department of Homeland Security Science and Technology Di-

rectorate. The participating local governments transmit network traffic (in the

form of netflow, IDS alerts and DNS records) to be monitored in exchange for

no-cost analysis, protection, or best course of action recommendations. PISCES315

stores the resulting data in an ELK stack.

Since PISCES’s beginning of operations in March 2018, petabytes of network

traffic data has been collected and organized. However, due to the nature of a

deployed system, crashes, bugs, and other oddities occasionally occur during the

system’s uptime causing numerous gaps in the collected data. For an ARMA320

model to provide effective feedback using a small dataset, the sample must be

contiguous and must reflect a standard traffic flux void of anomalies. In order

to guarantee this requirement, a week of data for which quality was manually

evaluated to be satisfactory was selected, and then proceeding weeks were gen-

erated using statistical noise. This way, we were able to preserve continuity325

without having to “cherry pick” traffic from different calendar days far apart

from one another.

It is important to note, the gathered network traffic is dependent on the

days of the week. Weekends experience much less volume of DNS requests

while Monday typically has the highest volume. There exists a seasonal trend330

of network traffic in which weekdays and weekends are distinguishable by their

volume of DNS requests and resulting coefficients. Using the gathered ERGM

log-odds from the empirical week as a baseline, new data was generated by

introducing a randomized multiplicative factor between 0.8 and 1.2. This range

was used due to observing the range of ergm values due to the lowest and highest335

traffic accordingly. The resulting values generated by this process were further

evaluated based on whether they reasonably corresponded to a similar empirical

13



day of the week. The result positively satisfied this requirement. Figure 3

shows a time series of an ERGM coefficient that includes the first week based

on empirical data and the subsequent generated weeks using the aforementioned340

process.

20
18

-04
-09

20
18

-04
-13

20
18

-04
-17

20
18

-04
-21

20
18

-04
-25

20
18

-04
-29

20
18

-05
-01

Date YYYY-MM-DD

0

20

40

60

80

100

ER
GM

 C
oe

ffe
cie

nt
 V

al
ue

Baseline with Generated Data

ERGM Coeffecients
Start of Generated Data

Figure 3: One empirical week followed by two generated weeks of data.

4.2. Generating DNS exfiltration

Once a time series of ERGM coefficients based on our baseline network traffic

was generated, we proceeded by designing different DNS exfiltration scenarios

for various days of the week. In table 1, we can see that a 10MB of DNS345

exfiltration corresponds to approximately 43,690 additional DNS requests added

to edges in the graph. This is due to the limitation that DNS exfiltration has

to use the available subdomain space of a domain request, which in practice

is less than 253 bytes. For the purposes of our experiment we assumed that

the domain name is 13 characters long and that the attacker has 240 bytes of350

available space to exfiltrate data from.

For simplicity, we ignore the fact that often Base64 encoding is used for such

purposes (due to non-ASCII compatible characters in the data) that further

14



DNS Volume to Request

Volume Approx. No. Re-

quests

2 Hops

10MB 43,690 87,380

50MB 218,453 436,906

100MB 436,906 873,812

500MB 2,184,533 4,369,066

1GB 4,473,924 8,947,848

Table 1: The approximate number of requests needed for an attacker to exfiltrate volumes of

data.

inflates the number of requests needed. Additionally, because of the presence of

DNS relays in network topology, a DNS request may traverse through multiple355

nodes in a network. In our graph representation of network DNS traffic we

also included the public DNS server which further increases the amount of DNS

requests that would appear in the graph should a DNS exfiltration occur. In fact,

as data extraction affects every edge that it travels through, the further away

from the public DNS a request is placed, the more “noise” it would generate360

in the graph. This in turn will affect the probabilities of a graph’s structural

properties that are generated by ERGM. Figure 4 shows a simple graph that

demonstrates the aforementioned scenario. It is clear to see the more isolated

a node is in the network, the more “noisy” an exfiltration attempt will be as

more edges are affected by the outflux of requests. The effect of this behavior365

can be pronounced in larger graphs as the established paths rarely change.

Figure 5 shows a graph that includes DNS relay nodes as well as public DNS

nodes. Black nodes are associated with IP addresses with outgoing requests,

gray are major internal routers and white represent public DNS servers. This

cross-sectional graph represents one day capture of DNS requests on the traffic370

of the municipal network that PISCES monitored.

15



+43690 +43690

Figure 4: An example of a 2-hop flow increase in a network. This is a typical DNS traffic

where the middle node is a DNS relay node that forwards or DNS requests on behalf of clients

to a public DNS server.

4.3. ERGM Configuration

Since the ERGM methodology is probabilistic, we ran repeated tests in order

to verify that the coefficients produced for the same graph by ERGM are stable

(i.e., do not vary substantially for the same graph). With an adequately large375

predefined sampling size and a sufficient burnin value (where the initial data

generated from MCMC are discarded), coefficients converge to a satisfactory

variance. It is these coefficients that were then randomized with the predefined

statistical noise described in section 4.1 to produce a generated day of traffic

for a similar day of the week.380

We built the representation of network DNS traffic as a directed graph with

valued edges. We used two statistical terms for our ERGM model in order

to maintain a computationally lightweight MCMC estimation. The first term,

sum, was used with a geometric distribution to represent probabilities associated

with valued edges in a network. This term measures the probability of a single385

unit increase for a given potential edge in the network. The second term that

we used, atLeast(x), measures the probability of finding an edge in the graph

with at least x weight. x is the threshold value that is required to determine the

log-odds and it was provided by us. In the case of our experiment, the threshold

value for atLeast was set to the arithmetic mean of all edges in our gathered390

empirical time series. This is an important hyperparameter to consider when

deploying this method if this particular ERGM term is used. Additionally, it is

important to note that by establishing a static threshold value using a normal

16



Figure 5: A graph representation of DNS requests over a 24-hour window. Black vertices indi-

cate requests being sent, gray vertices are major internal routers, and white vertices indicate

public DNS services.

week of data, it safeguards against possible adversarial machine learning attacks.

For example, in the case of the boiling frog scenario[17], a gradual increase of395

traffic will not affect the previously defined hyperparameter value unless it is

automatically or manually adjusted at time intervals. As a result, this type

of attack will eventually be detected as an anomaly. The log-odd coefficients

produced by these two terms were then passed onto the ARMA model.

4.4. ARMA Configuration400

Once the ERGM estimation phase of data analysis was completed, we uti-

lized the log-odd coefficients produced by the model to form a time series dataset

than can be used by ARMA for prediction. Due to the small sample size of ob-

served days in our sample (14 weeks), any amount of significant noise greatly

affects the stationarity of the data. To combat this, a method of differencing405

17



was used where a rolling z−score of a seven day window was subtracted from

the observed value. Augmented Dickey-Fuller unit root tests confirmed the sta-

tionarity of the transformed time series data within a 99% confidence interval.

The pmdarima [26] software package was used to perform grid search hyper-

parameter optimization for ARMA focusing on the minimization of the model’s410

Akaike Information Criterion (AIC). Note that this software package can be

used to fit ARIMA models, also seen as ARIMA(p, d, q). However, since data

deflation was to be tightly controlled, in order to achieve stationarity, the dif-

ferencing term d was omitted.

Although large training data (e.g., a year worth of ERGM coefficients derived415

from daily network graphs) may intuitively mean better predictions, we posit

that a) it is practically unfeasible and even excessive to collect such a large

dataset, and b) it may hinder the prediction ability of an ARMA model due to

variance caused by natural changes in computer networks over the course of a

year. We recommend that for a more realistic model evaluation for daily traffic,420

a training set should consist of a few weeks of traffic if a weekly seasonality

is assumed. The number of observations in the test set should also be kept

small due to the decreasing prediction confidence of the ARMA model as time

progresses from the start of a prediction. In practice, our method is expected

to be implemented without any forecasting. Instead, a given current observed425

traffic would be triangulated with the predicted traffic for any current moment.

The alert threshold used in our proposed method is a threshold of varying

standard deviation over the training period. Due to the nature of the time

series, this method of detection incorporates temporal variations in the thresh-

old. As such, it allows for a higher threshold on days typically associated with430

higher volumes of traffic. An alert is raised if the observed value is outside the

configured threshold from the predicted value. In our experimental design, this

translates to the log-odd ERGM coefficient being outside the baseline estab-

lished by the ARMA model. Figure 6 shows an example of predictions made

by a trained ARMA model along with the alert threshold of 1 standard devi-435

ation (shown as an error bar). The dashed lines for the final two weeks of the

18



time series represents the observed traffic coefficients. The traffic is considered

normal for these days since the observed and predicted traffic does not deviate

beyond our alert threshold.

20
18

-04
-15

20
18

-04
-29

20
18

-05
-01

20
18

-05
-15

20
18

-05
-29

20
18

-06
-01

20
18

-06
-15

20
18

-06
-29

20
18

-07
-01

20
18

-07
-15

20
18

-07
-29

20
18

-08
-01

Date YYYY-MM-DD

2

1

0

1

2

De
fla

te
d 

Co
ef

fe
cie

nt
 V

al
ue

Two Week Forecast
train
test
predictions

Figure 6: ARMA Model fit using approx. 3 months of training data and predicting over a two

week period with 1 std. error bars. Observed traffic is shown in dashed lines for the predicted

two weeks. Predicted and observed coefficients do not deviated beyond 1 std. error bar.

4.5. Experimental Procedure440

We developed three data exfiltration scenarios based on data volume for

the purposes of this experiment. Low volume data exfiltration was defined as

any amount in the range of 10MB to 100MB. Medium corresponded to 100MB

up until 500MB. Lastly, high data exfiltration volume was any amount of data

between 500MB and 1GB. In terms of data exfiltration volume, all these cate-445

gories are relatively conservative. In past incidents of data exfiltration, multiple

gigabytes of data are typically exfiltrated out of a network [6].

Our experiments aimed to identify the classification accuracy of our approach

on a) detecting incidents of DNS exfiltrations, and b) classifying days with

normal traffic correctly. To generate a malicious attempt, the observed network450

19



for a given day of the week was injected with requests corresponding to each

value of exfiltration in table 1. A two-hop process was used as the basis for

DNS exfiltration. This is a typical network path that DNS requests follow

in many networks (see figure 4 for an understanding of a two-hop increase).

Seven normal week days from our generated set were selected as candidates455

for testing our method’s ability to detect anomalies. These days were then

injected with DNS traffic at random. The graphs containing the injected DNS

traffic (representing data exfiltration) were then used as ERGM input in order

to calculate the statistical terms (mentioned in section 4.3) and extract the

coefficient values.460

We trained our ARMA model on 14 weeks of generated traffic that was based

on our initial PISCES data. Then a testing week was randomly generated as

normal traffic (see figure 6 for visual depiction of this approach). Then a random

day in the testing week was replaced with a randomized coefficient value relating

to the volume of DNS exfiltration based on table 1. Then the trained ARMA465

model would predict the testing week. Observed as well as predicted coefficients

would then be compared in respect to our alert threshold values. Results were

obtained for three separate alert threshold values in order to demonstrate how

fine-tuning may affect the detection accuracy of our approach. These threshold

values were: a) one standard deviation, b) one half standard deviation, and c)470

one quarter of a standard deviation.

This process was repeated for a total of 500 times generating a testing week

each time that was comprised of six normal days of traffic and one day that

DNS exfiltration was attempted. Put simply, our experiments contained 3000

normal and 500 abnormal day classification attempts for every alert threshold475

(e.g., one standard deviation) and every DNS exfiltration category (e.g., low

data exfiltration, 10MB to 100MB).

20



5. Results

In this section we show the results of our experiment for our proposed

method. We describe below the accuracy performance results and highlight480

the computational requirements for our method.

5.1. Performance

For our evaluation we utilized the following common classification metrics:

accuracy, precision, recall and F2 score.

We calculated precision in order to identify the false positive rate for our485

method. This was defined as follows: Precision = TP TP+FP
where TP is the

true positives and FP the false positives.

We subsequently estimated recall in order to identify how well our method

will help us avoid false negative incidents. Simply put, how many data exfil-

trations the method failed to detect. Recall was defined as follows: Recall =490

TP TP+FN
where TP is the true positives and FN is the false positives.

We summarized the interplay of precision and recall using accuracy, which

we defined as: Accuracy = TP + TN n

where TP is the true positives, TN is true negatives, and n is the size of

the experimental trials (i.e., the number of days that we tried to identified as495

normal or anomalous).

The standard F1 score is the harmonic average of both precision and recall,

weighing both of these values equally. In the case of our results, an F2 score

is the preferred method of displaying performance. An F2 score weighs more

heavily on recall providing a better performance metric when evaluating models500

to detect anomalous behavior. The F2 score was defined as follows: Fβ=2 =

(1 + β2) · Precision·Recall
(β2·Precision)+Recall where β is 2 in this example, indicating an F2

score.

Results of all our experiments are summarized on table 2. There exists

a positive correlation between threshold value and accuracy. That is, as the505

threshold value decreases, accuracy follows, which makes intuitive sense. As the

21



threshold value decreases, the model is more strict about the temporal pattern

of the data therefore classifying more false positives and less true negatives.

Precision can be observed to have a positive correlation with the threshold

value as we would expect. If the system classifies an anomaly, precision details510

how often that classification is correct. As the threshold value decreases, we

increase the classification of false positives attributing to the drop of precision.

DNS Exfiltration Detection Performance (n=3500)

Volume Threshold Precision Recall F2 Score Accuracy

Low 1 std. 0.644 0.294 0.330 0.876

1/2 std. 0.433 0.524 0.503 0.834

1/4 std. 0.209 0.78 0.504 0.548

Medium 1 std. 0.847 0.622 0.657 0.93

1/2 std. 0.549 0.918 0.809 0.88

1/4 std. 0.263 1.0 0.641 0.6

High 1 std. 0.931 0.712 0.747 0.951

1/2 std. 0.546 1.0 0.857 0.881

1/4 std. 0.262 1.0 0.640 0.597

Table 2: Performance metrics across different volumes of exfiltration with varying threshold

values.

Possibly, a more important metric to consider is recall. Recall is represen-

tative of a system’s “completeness.” If a data exfiltration event were to occur,

recall details how often it would be caught by the system. In the case of medium515

data exfiltration, using a threshold of one half standard deviation provided a

recall score of .918 (or 91.8%). By restricting the threshold to one quarter of

standard deviation, there is not much improvement in recall and in fact preci-

sion decreases. As such, this threshold value is an important hyperparameter

to consider when implementing our method.520

In practice, this indicates a point of diminishing returns in defining a lower

threshold value. By increasing the amount of false positives the usefulness

22



of anomaly detection is decreased. As such, an ideal “golden” threshold can

be found where recall remains high without substantially influencing precision.

In terms of our evaluation metrics, accuracy can be rather deceptive since it525

focuses in the overall improvement of either precision or recall (much like F1

score which also represents the harmonic mean between these two metrics).

However, in practice, we want to prioritize recall first in anomaly detection to

avoid incidents that are costly to organizations.

Detecting DNS exfiltration that is below 100MB (a rare event for data exfil-530

tration) is difficult for our method unless a more aggressive threshold is selected

at the expense of increasing false positive rate. However, our method can iden-

tify almost all DNS exfiltration attempts above the 100MB data exfiltration

threshold (medium and high data exfiltration) with a reasonable amount of

false positive alerts. In fact, as the volume of DNS exfiltration increases, the535

accuracy (F2 score also increases) indicating that any exfiltration beyond the

upper bound of our experiment (1GB) is almost definitively detectable.

5.2. Computational Requirements

Network topology is the main factor affecting the ability of our method to

scale. Given that ERGM estimates an exponential number of graph permuta-540

tions, increasing the number of nodes (i.e., increasing the number of network

devices) would exponentially increase the number of possible permutations that

need to be computed. However, organizational networks or those of a govern-

ment building, rarely exceed a reasonably small upper bound (e.g., a few hun-

dred to a few thousand network devices). In our demonstrated experiment, the545

local municipality had 120 devices. One ERGM estimation of the network using

the experimental dataset required roughly 20 minutes of computing time on an

Intel Core i7-7700 @ 3.60Ghz. As such, this method can be reasonably imple-

mented on an hourly or daily basis. Typically, that is a reasonable time-frame

for a cybersecurity analyst to investigate an incident. Faster infrastructure could550

potentially allow for minute by minute classification of traffic, however, it is un-

clear on whether that time window may contain enough meaningful information

23



(device communications and seasonality) for our method. Future research will

aim to investigate the application of our method to micro scale events.

A further requirement relates to ARMA requiring a minimal time window555

to predict and train reliably. Additionally, the model only needs to be trained

periodically to predict new trends in the network flow. If a data point is known

to be void of anomalous behavior, it can be quickly added to the training dataset

and retraining is not computationally expensive. Further, ARMA predictions

can potentially be made in near real-time.560

6. Limitations

There are a few limitations that we need to highlight in regards to our

method. These relate to the constraints on the initial data, problems that

might arise from ERGM calculations, and assuring best model performance for

anomaly detection.565

First, the collected input data for our method must be contiguous and devoid

of abnormalities. If it is non-contiguous, another time series analysis model

(other than ARMA) will need to be used that can account for data gaps. The

training data must also be representative of the network traffic’s norm. In

other words, devoid of any extreme abnormalities such as an outage that makes570

computers inoperable. This would greatly affect model performance as the

model needs to learn the proper network data trend. When training data is

rotated (e.g., updated every 7 days with more recent data), the effect of these

abnormalities can be minimized. However, it is still worth noting that such

network traffic abnormalities will raise an alert as an anomaly. Additionally,575

other methods may need to be used in order to increase the stationarity of the

time series (a requirement by ARMA). Ultimately, this decision would need to

be made a priori as there are multiple detrending methods for time-series models

[27, 28].

The size of the graph is a large limiting factor for our proposed method.580

As stated in section 3.1, the amount of permutations of the graph grows expo-

24



nentially with the amount of nodes added (devices in the network). Therefore,

there is a limit to the size of the network where the computation time required

by the ERGM process becomes prohibitively excessive.

Finally, configuration of the ARMA model will more than likely require585

human input. The model will need to be validated before it is deployed. This

can ensure that there is enough data for the model to learn the network traffic

norm and that model predictions are within reasonable expectations. A final

challenge that requires further investigation relates to networks that change

structure very frequently. This does not affect the majority of applications of590

the method but highly dynamic networks will require additional considerations.

A radically dynamic structure of a network will reflect a dynamic graph, which

in turn will lead to ERGM coefficients potentially becoming unreliable. In turn,

ARMA’s predictions would not be able to identify a proper network trend.

The end result is likely to create an anomaly detection method that is either595

highly insensitive to rapid network changes or highly sensitive (depending on

the thresholds that are defined for anomaly alerting).

7. Future Work

Future work should explore the method’s detection accuracy for data exfiltra-

tion in a real-time implementation. We anticipate that the mean and variance of600

any real-time time series is likely to change over time and become non-stationary,

which is an important condition for the goodness of fit of ARMA. Studies need

to investigate how further manipulation of the data and relationships should be

approached in such incidents.

Furthermore, real-world traffic introduces more network noise requiring a605

more finely tuned approach of parameter values for the models. For example,

a network’s traffic constant growth (e.g., more workstations added to the net-

work) will result in a steady increase of network traffic leading to the mean and

variance of transmitted bytes to increase. This would result in a decrease in

the stationarity of the training data used in the ARMA prediction model. One610

25



approach that can resolve this challenge is the process of retraining the ARMA

model periodically. This approach can help predictions stay accurate in relation

to the actual underlying network topology and developing trends.

A further focus of our work aims to adapt the methodology to other network

compromises other than data exfiltration over the DNS protocol. For example,615

attackers can utilize protocols such as HTTP and HTTPS traffic for command

and control communication as well as data exfiltration[29]. Network graphs for

HTTP and HTTPS netflow relations is different from DNS traffic. In HTTP (or

HTTPS) traffic, the graph of observable vertices is substantially larger if external

IP addresses were to be included. In turn, ERGM coefficient estimation becomes620

prohibitively computationally expensive (e.g., 30 hour run time). A potential

approach that can reduce the size of these graphs (e.g., derived by HTTP traffic)

is by classifying any address outside the observable local area network as a single

supernode (i.e., aggregating external network nodes into one) or by clustering

this external subnets based on some other networking factor (e.g., autonomous625

system number).

8. Conclusion

In conclusion, companies and organizations are becoming invested in build-

ing cyber-resilience as data exfiltration attempts become increasingly frequent

[1]. New methods for anomaly detection can help cybersecurity analysts secure630

the infrastructure of organizations. The method proposed in this paper serves

as an additional tool to analysts that can assist in detecting data exfiltration.

We have demonstrated the efficacy of our method in an example scenario of data

exfiltration and further exploration will determine the accuracy of the method

in other domain of application. Our hope is that our methodology can be useful635

in reducing the possible workload of cybersecurity analysts by allowing them to

only investigate truly anomalous network events.

26



[1] Ponemon Institute, The 2019 Study on the Cyber Resilient Organization,

Tech. rep. (2019).

URL https://www.ibm.com/downloads/cas/GAVGOVNV640

[2] A. Giani, V. H. Berk, G. V. Cybenko, Data exfiltration and covert channels,

Sensors, and Command, Control, Communications, and Intelligence (C3I)

Technologies for Homeland Security and Homeland Defense V 6201 (May

2006) (2006) 620103. doi:10.1117/12.670123.

[3] Y. Liu, C. Corbett, K. Chiang, R. Archibald, SIDD: A Framework for645

Detecting Sensitive Data Exfiltration by an Insider Attack (2011) 1–10doi:

10.1109/hicss.2009.390.

[4] C. J. D’Orazio, K. K. R. Choo, L. T. Yang, Data Exfiltration from Internet

of Things Devices: IOS Devices as Case Studies, IEEE Internet of Things

Journal 4 (2) (2017) 524–535. doi:10.1109/JIOT.2016.2569094.650

[5] Q. Do, B. Martini, K. K. R. Choo, A Data Exfiltration and Remote Ex-

ploitation Attack on Consumer 3D Printers, IEEE Transactions on Infor-

mation Forensics and Security 11 (10) (2016) 2174–2186. doi:10.1109/

TIFS.2016.2578285.

[6] O. Williams-Grut, Hackers once stole a casino’s high-roller655

database through a thermometer in the lobby fish tank,

https://www.businessinsider.com/hackers-stole-a-casinos-database-

through-a-thermometer-in-the-lobby-fish-tank-2018-4. Accessed on:

2019-06-04 (2018).

URL https://www.businessinsider.com/660

hackers-stole-a-casinos-database-through-a-thermometer-in-the-lobby-fish-tank-2018-4

[7] A. Al-Bataineh, G. White, Analysis and detection of malicious data ex-

filtration in web traffic, Proceedings of the 2012 7th International Con-

ference on Malicious and Unwanted Software, Malware 2012 (2012) 26–

31doi:10.1109/MALWARE.2012.6461004.665

27

https://www.ibm.com/downloads/cas/GAVGOVNV
https://www.ibm.com/downloads/cas/GAVGOVNV
http://dx.doi.org/10.1117/12.670123
http://dx.doi.org/10.1109/hicss.2009.390
http://dx.doi.org/10.1109/hicss.2009.390
http://dx.doi.org/10.1109/hicss.2009.390
http://dx.doi.org/10.1109/JIOT.2016.2569094
http://dx.doi.org/10.1109/TIFS.2016.2578285
http://dx.doi.org/10.1109/TIFS.2016.2578285
http://dx.doi.org/10.1109/TIFS.2016.2578285
https://www.businessinsider.com/hackers-stole-a-casinos-database-through-a-thermometer-in-the-lobby-fish-tank-2018-4
https://www.businessinsider.com/hackers-stole-a-casinos-database-through-a-thermometer-in-the-lobby-fish-tank-2018-4
https://www.businessinsider.com/hackers-stole-a-casinos-database-through-a-thermometer-in-the-lobby-fish-tank-2018-4
https://www.businessinsider.com/hackers-stole-a-casinos-database-through-a-thermometer-in-the-lobby-fish-tank-2018-4
https://www.businessinsider.com/hackers-stole-a-casinos-database-through-a-thermometer-in-the-lobby-fish-tank-2018-4
https://www.businessinsider.com/hackers-stole-a-casinos-database-through-a-thermometer-in-the-lobby-fish-tank-2018-4
http://dx.doi.org/10.1109/MALWARE.2012.6461004


[8] T. W. Fawcett, C. J. Cotton, W. D. Sincoskie, Detection of Data Exfil-

tration Using Entropy and Encryption Characteristics of Network Traffic,

Ph.D. thesis, University of Delaware (2006).

[9] N. M. Hands, B. Yang, R. A. Hansen, A Study on Botnets Utilizing DNS, in:

Proceedings of the 4th Annual ACM Conference on Research in Information670

Technology - RIIT ’15, ACM Press, New York, New York, USA, 2015, pp.

23–28. doi:10.1145/2808062.2808070.

URL http://dl.acm.org/citation.cfm?doid=2808062.2808070

[10] K. Born, D. Gustafson, Detecting DNS Tunnels Using Character Frequency

Analysis, SciencePrimer.com (2010) 1arXiv:1004.4358.675

URL http://scienceprimer.com/boyles-lawhttp://arxiv.org/abs/

1004.4358

[11] Y. Nadji, R. Perdisci, M. Antonakakis, Still Beheading Hydras: Botnet

Takedowns Then and Now, IEEE Transactions on Dependable and Secure

Computing 14 (5) (2017) 535–549. doi:10.1109/TDSC.2015.2496176.680

URL http://ieeexplore.ieee.org/document/7312442/

[12] P. Paganini, Analyzing OilRig’s malware that uses DNS Tunneling,

https://securityaffairs.co/wordpress/84125/apt/oilrig-dns-tunneling.html.

Accessed on: 2019-06-04 (2019).

URL https://securityaffairs.co/wordpress/84125/apt/685

oilrig-dns-tunneling.html

[13] A. Nadler, A. Aminov, A. Shabtai, Detection of malicious and low through-

put data exfiltration over the DNS protocol, Computers & Security 80

(2019) 36–53. doi:10.1016/j.cose.2018.09.006.

URL https://linkinghub.elsevier.com/retrieve/pii/690

S0167404818304000

[14] M. P. Collins, Network security through data analysis from data to action,

2nd Edition, O’Reily Media Inc., 2017.

28

http://dl.acm.org/citation.cfm?doid=2808062.2808070
http://dx.doi.org/10.1145/2808062.2808070
http://dl.acm.org/citation.cfm?doid=2808062.2808070
http://scienceprimer.com/boyles-law http://arxiv.org/abs/1004.4358
http://scienceprimer.com/boyles-law http://arxiv.org/abs/1004.4358
http://scienceprimer.com/boyles-law http://arxiv.org/abs/1004.4358
http://arxiv.org/abs/1004.4358
http://scienceprimer.com/boyles-law http://arxiv.org/abs/1004.4358
http://scienceprimer.com/boyles-law http://arxiv.org/abs/1004.4358
http://scienceprimer.com/boyles-law http://arxiv.org/abs/1004.4358
http://ieeexplore.ieee.org/document/7312442/
http://ieeexplore.ieee.org/document/7312442/
http://ieeexplore.ieee.org/document/7312442/
http://dx.doi.org/10.1109/TDSC.2015.2496176
http://ieeexplore.ieee.org/document/7312442/
https://securityaffairs.co/wordpress/84125/apt/oilrig-dns-tunneling.html
https://securityaffairs.co/wordpress/84125/apt/oilrig-dns-tunneling.html
https://securityaffairs.co/wordpress/84125/apt/oilrig-dns-tunneling.html
https://securityaffairs.co/wordpress/84125/apt/oilrig-dns-tunneling.html
https://linkinghub.elsevier.com/retrieve/pii/S0167404818304000
https://linkinghub.elsevier.com/retrieve/pii/S0167404818304000
https://linkinghub.elsevier.com/retrieve/pii/S0167404818304000
http://dx.doi.org/10.1016/j.cose.2018.09.006
https://linkinghub.elsevier.com/retrieve/pii/S0167404818304000
https://linkinghub.elsevier.com/retrieve/pii/S0167404818304000
https://linkinghub.elsevier.com/retrieve/pii/S0167404818304000
https://www.oreilly.com/library/view/network-security-through/9781491962831/


URL https://www.oreilly.com/library/view/

network-security-through/9781491962831/695

[15] C. Sanders, J. Smith, Applied Network Security Monitoring: Collection,

Detection, and Analysis, Elsevier Science, 2013.

URL https://books.google.com/books?id=TTIDAQAAQBAJ

[16] W. Ellens, P. Żuraniewski, A. Sperotto, H. Schotanus, M. Mandjes,

E. Meeuwissen, Flow-Based Detection of DNS Tunnels, in: Lecture Notes700

in Computer Science (including subseries Lecture Notes in Artificial Intel-

ligence and Lecture Notes in Bioinformatics), Vol. 7943 LNCS, 2013, pp.

124–135. doi:10.1007/978-3-642-38998-6_16.

URL http://link.springer.com/10.1007/978-3-642-38998-6{_}16

[17] J. Tygar, Adversarial Machine Learning, IEEE Internet Computing 15 (5)705

(2011) 4–6. doi:10.1109/MIC.2011.112.

URL http://ieeexplore.ieee.org/document/6015575/

[18] L. A. Adamic, B. A. Huberman, Glottometrics, Glottometrics 3 (1) (2002)

143–150.

[19] M. S. Handcock, D. R. Hunter, C. T. Butts, S. M. Goodreau, M. Morris,710

statnet: Software Tools for the Representation, Visualization, Analysis

and Simulation of Network Data Mark 24 (1) (2008) 1–11.

URL http://www.jstatsoft.org/v24/i01/paper{%}5Cnpapers2:

//publication/uuid/8CCE9B1B-3345-4D85-87FE-B2A8D6E8F50E

[20] R Core Team, R: A Language and Environment for Statistical Computing,715

R Foundation for Statistical Computing, Vienna, Austria, https://www.R-

project.org/. Accessed on: 2019-06-04 (2018).

URL https://www.R-project.org/

[21] J. Contreras, R. Esṕınola, F. J. Nogales, A. J. Conejo, ARIMA models to

predict next-day electricity prices, IEEE Transactions on Power Systems720

18 (3) (2003) 1014–1020. doi:10.1109/TPWRS.2002.804943.

29

https://www.oreilly.com/library/view/network-security-through/9781491962831/
https://www.oreilly.com/library/view/network-security-through/9781491962831/
https://www.oreilly.com/library/view/network-security-through/9781491962831/
https://books.google.com/books?id=TTIDAQAAQBAJ
https://books.google.com/books?id=TTIDAQAAQBAJ
https://books.google.com/books?id=TTIDAQAAQBAJ
https://books.google.com/books?id=TTIDAQAAQBAJ
http://link.springer.com/10.1007/978-3-642-38998-6{_}16
http://dx.doi.org/10.1007/978-3-642-38998-6_16
http://link.springer.com/10.1007/978-3-642-38998-6{_}16
http://ieeexplore.ieee.org/document/6015575/
http://dx.doi.org/10.1109/MIC.2011.112
http://ieeexplore.ieee.org/document/6015575/
http://www.jstatsoft.org/v24/i01/paper{%}5Cnpapers2://publication/uuid/8CCE9B1B-3345-4D85-87FE-B2A8D6E8F50E
http://www.jstatsoft.org/v24/i01/paper{%}5Cnpapers2://publication/uuid/8CCE9B1B-3345-4D85-87FE-B2A8D6E8F50E
http://www.jstatsoft.org/v24/i01/paper{%}5Cnpapers2://publication/uuid/8CCE9B1B-3345-4D85-87FE-B2A8D6E8F50E
http://www.jstatsoft.org/v24/i01/paper{%}5Cnpapers2://publication/uuid/8CCE9B1B-3345-4D85-87FE-B2A8D6E8F50E
http://www.jstatsoft.org/v24/i01/paper{%}5Cnpapers2://publication/uuid/8CCE9B1B-3345-4D85-87FE-B2A8D6E8F50E
http://www.jstatsoft.org/v24/i01/paper{%}5Cnpapers2://publication/uuid/8CCE9B1B-3345-4D85-87FE-B2A8D6E8F50E
https://www.R-project.org/
https://www.R-project.org/
http://dx.doi.org/10.1109/TPWRS.2002.804943


[22] J. Torres, A. Garćıa, M. De Blas, A. De Francisco, Forecast of hourly

average wind speed with ARMA models in Navarre (Spain), Solar Energy

79 (1) (2005) 65–77. doi:10.1016/j.solener.2004.09.013.

URL http://www.sciencedirect.com/science/article/pii/725

S0038092X04002877https://linkinghub.elsevier.com/retrieve/

pii/S0038092X04002877

[23] C. Peng, M. Xu, S. Xu, T. Hu, Modeling multivariate cybersecurity risks,

Journal of Applied Statistics 45 (15) (2018) 2718–2740. doi:10.1080/

02664763.2018.1436701.730

URL https://doi.org/10.1080/02664763.2018.1436701https://www.

tandfonline.com/doi/full/10.1080/02664763.2018.1436701

[24] D. Williamson, Protecting networks from DNS exfiltration,

https://www.helpnetsecurity.com/2017/10/02/dns-exfiltration/. Ac-

cessed on: 2019-06-04 (2017).735

URL https://www.helpnetsecurity.com/2017/10/02/

dns-exfiltration/

[25] M. Hamilton, CI Security Partners with PISCES to Provide a Public

Option for Cybersecurity Monitoring, https://ci.security/news/article/ci-

security-partnership-pisces-cybersecurity-monitoring. Accessed on: 2019-740

06-04 (2018).

URL https://ci.security/news/article/

ci-security-partnership-pisces-cybersecurity-monitoring

[26] T. G. Smith, pmdarima, https://pypi.org/project/pmdarima/. Accessed

on: 2019-06-04 (2019).745

URL https://pypi.org/project/pmdarima/

[27] B. Podobnik, H. E. Stanley, Detrended cross-correlation analysis: A new

method for analyzing two nonstationary time series, Physical Review Let-

ters 100 (8) (2008) 1–4. doi:10.1103/PhysRevLett.100.084102.

30

http://www.sciencedirect.com/science/article/pii/S0038092X04002877 https://linkinghub.elsevier.com/retrieve/pii/S0038092X04002877
http://www.sciencedirect.com/science/article/pii/S0038092X04002877 https://linkinghub.elsevier.com/retrieve/pii/S0038092X04002877
http://www.sciencedirect.com/science/article/pii/S0038092X04002877 https://linkinghub.elsevier.com/retrieve/pii/S0038092X04002877
http://dx.doi.org/10.1016/j.solener.2004.09.013
http://www.sciencedirect.com/science/article/pii/S0038092X04002877 https://linkinghub.elsevier.com/retrieve/pii/S0038092X04002877
http://www.sciencedirect.com/science/article/pii/S0038092X04002877 https://linkinghub.elsevier.com/retrieve/pii/S0038092X04002877
http://www.sciencedirect.com/science/article/pii/S0038092X04002877 https://linkinghub.elsevier.com/retrieve/pii/S0038092X04002877
http://www.sciencedirect.com/science/article/pii/S0038092X04002877 https://linkinghub.elsevier.com/retrieve/pii/S0038092X04002877
http://www.sciencedirect.com/science/article/pii/S0038092X04002877 https://linkinghub.elsevier.com/retrieve/pii/S0038092X04002877
https://doi.org/10.1080/02664763.2018.1436701 https://www.tandfonline.com/doi/full/10.1080/02664763.2018.1436701
http://dx.doi.org/10.1080/02664763.2018.1436701
http://dx.doi.org/10.1080/02664763.2018.1436701
http://dx.doi.org/10.1080/02664763.2018.1436701
https://doi.org/10.1080/02664763.2018.1436701 https://www.tandfonline.com/doi/full/10.1080/02664763.2018.1436701
https://doi.org/10.1080/02664763.2018.1436701 https://www.tandfonline.com/doi/full/10.1080/02664763.2018.1436701
https://doi.org/10.1080/02664763.2018.1436701 https://www.tandfonline.com/doi/full/10.1080/02664763.2018.1436701
https://www.helpnetsecurity.com/2017/10/02/dns-exfiltration/
https://www.helpnetsecurity.com/2017/10/02/dns-exfiltration/
https://www.helpnetsecurity.com/2017/10/02/dns-exfiltration/
https://www.helpnetsecurity.com/2017/10/02/dns-exfiltration/
https://ci.security/news/article/ci-security-partnership-pisces-cybersecurity-monitoring
https://ci.security/news/article/ci-security-partnership-pisces-cybersecurity-monitoring
https://ci.security/news/article/ci-security-partnership-pisces-cybersecurity-monitoring
https://ci.security/news/article/ci-security-partnership-pisces-cybersecurity-monitoring
https://ci.security/news/article/ci-security-partnership-pisces-cybersecurity-monitoring
https://ci.security/news/article/ci-security-partnership-pisces-cybersecurity-monitoring
https://pypi.org/project/pmdarima/
https://pypi.org/project/pmdarima/
http://dx.doi.org/10.1103/PhysRevLett.100.084102


[28] J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin,750

A. Bunde, H. E. Stanley, Multifractal detrended fluctuation analysis of

nonstationary time series, Physica A: Statistical Mechanics and its Ap-

plications 316 (1-4) (2002) 87–114. arXiv:0202070v1, doi:10.1016/

S0378-4371(02)01383-3.

[29] J. Parfet, Conducting and Detecting Data Exfiltration [Blog Post],755

https://www.mindpointgroup.com/blog/operations/conducting-and-

detecting-data-exfiltration/. Accessed on: 2019-06-04 (2018).

URL https://www.mindpointgroup.com/blog/operations/

conducting-and-detecting-data-exfiltration/

31

http://arxiv.org/abs/0202070v1
http://dx.doi.org/10.1016/S0378-4371(02)01383-3
http://dx.doi.org/10.1016/S0378-4371(02)01383-3
http://dx.doi.org/10.1016/S0378-4371(02)01383-3
https://www.mindpointgroup.com/blog/operations/conducting-and-detecting-data-exfiltration/
https://www.mindpointgroup.com/blog/operations/conducting-and-detecting-data-exfiltration/
https://www.mindpointgroup.com/blog/operations/conducting-and-detecting-data-exfiltration/
https://www.mindpointgroup.com/blog/operations/conducting-and-detecting-data-exfiltration/

	Introduction
	Related works
	Proposed method
	Statistical Analysis of Network Topology
	Time Series Analysis of Coefficients

	Experimental Design
	Data Collection
	Generating DNS exfiltration
	ERGM Configuration
	ARMA Configuration
	Experimental Procedure

	Results
	Performance
	Computational Requirements

	Limitations
	Future Work
	Conclusion

